МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Томский государственный университет Механико-математический факультет

		УТВЕРЖДА	Ю
"	"	 200	Γ.

Рабочая программа дисциплины МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Направление подготовки 010200.62 Математика и компьютерные науки

Профиль подготовки 010200.62.04 Математическое и компьютерное моделирование

Квалификация (степень) выпускника Бакалавр

Форма обучения *очная*

г. Томск 2014 г

1. Цели и задачи освоения дисциплины

Целями и задачами освоения дисциплины «Математическое моделирование ч.2» являются

- 1.1. Подготовка бакалавров математиков к применению математических методов, алгоритмов цифровой обработки и модельного подхода для решения прикладных задач, связанных с улучшением качества изображения, редактирования изображения, адекватного описания изображений с целью архивации и поиска изображения или фрагмента изображения по заданному ключу.
- 1.2. Дать опыт применения знаний, полученные в курсах Математического анализа, Алгебры, Геометрии, Дифференциальных уравнений, Теории вероятностей и Компьютерных науках для решения практических задач в рамках моделей цифрового изображения, формулирования задач, которые можно решать на основании, рассматриваемой модели и создания комплекса программ на языке высокого уровня, для решения сформулированных задач.

2.Место дисциплины в структуре ООП бакалавриата

Курс входит в блок «Компьютерные науки». В курсе «Математическое моделирование» студент получает опыт применения знаний, полученных в математических курсах и курсе компьютерные науки для решения прикладной задачи.

Для изучения курса необходимо освоить курсы «Математического анализа», «Геометрии и линейной алгебры», «Теории вероятностей и математической статистики», «Компьютерных наук и программирования».

3 Компетенции обучающегося, формируемые в результате освоения дисциплины (модуля) «Математическое моделирование»

1. Универсальные (общекультурные)

- 1.1. Способность и постоянную готовность совершенствовать и углублять свои знания, быстро адаптироваться к любым ситуациям (ОК-8):
- способен к самостоятельному обучению новым методам исследования, к изменению научного и научно-производственного профиля своей профессиональной деятельности (ОК-8):
- 1.2. Обладать значительными навыками самостоятельной работы с компьютером, программирования, использования методов обработки информации и численных методов решения базовых задач (ОК-12):

Имеет навыки самостоятельной работы с компьютером, программирования, использования методов обработки цифрового изображения и методов решения базовых задач обработки изображения(ОК-12):

2. Профессиональные:

Выпускник должен обладать следующими профессиональными компетенциями (ПК):

научно-исследовательская и научно-изыскательская деятельность:

- умение понять поставленную задачу (ПК-2);
- умение формулировать результат (ПК-3);
- умение грамотно пользоваться языком предметной области (ПК-7);

 понимание того, что фундаментальное знание является основой компьютерных наук (ПК-12)

В результате освоения дисциплины обучающийся должен:

Знать: основные задачи обработки изображения: дискретизации, улучшения, сжатия, восстановления, сегментации, представления и описания, распознавания.

Уметь: понять поставленную задачу, грамотно пользоваться языком предметной области, формулировать результат.

Владеть: навыками применения MATLAB для улучшения, сегментации, представления и описания и распознавания цифровых изображений.

4. Структура и содержание дисциплины «Мате	матическое моделирован	ние ч.2»
Общая трудоемкость дисциплины составляет	зачетных единиц	часов

- 1) **Введение.** Представление изображения. Примеры областей применения цифровой обработки изображения. Основные стадии цифровой обработки изображения. Система MATLAB и пакет Image Processing ToolBox. Рабочая среда MATLAB. Сохранение и загрузка рабочего пространства.
- 2) **Основы цифрового представления изображения.** Элементы зрительного восприятия. Свет и электромагнитный спектр. Считывание и регистрация изображения. Математическая модель цифрового изображения. Дискретизация и квантование изображения. Отношения между пикселями. Линейные и нелинейные преобразования.
- 3) Цифровое изображение в MATLAB. Загрузка изображения. Вывод изображения на дисплей. Сохранение изображений. Классы данных. Типы изображений. Конвертирование классов данных и типов изображения. Индексирование массивов. Размерность массивов. Создание тфайлов. Арифметические операторы. Операторы сравнения. Логические операторы и логические функции. Представление чисел. Операторы ветвления. Операторы цикла For и While. Операторы Break, Continue и Switch. Векторные и матричные операторы.
- 4) Методы улучшения изображения.

№ п/п	Раздел Дисциплины	Семестр	Неделя семестра	Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах)			Формы текущего контроля успеваемости (по неделям семестра) Форма промежуточной аттестации (по семестрам)
				Лекц	Лабораторные	CPC	
				ии	работы		
1	Введение.	6	1	2	2		
2	Основы цифрового представления	6	2	2	2		Индивидуальная работа 1

	изображения.					
3	Цифровое изображение в MATLAB.	6	3		2	
4	Методы улучшения изображения.	6	3-6	8	6	Контрольная работа 1
5	Восстановление изображений	6	7-9	6	6	Индивидуальная работа 2
6	Обработка цветных изображений	6	10-12	4	6	Индивидуальная работа 3
7	Сжатие изображений	6	12	2		Индивидуальная работа 4
8	Морфологическая обработка и сегментация изображений	6	13	2	2	
9	Представление и описание	6	14-15	4	4	Коллоквиум
10	Распознавание объектов	6	16	2	2	Индивидуальная работа 5
	ИТОГО:			32	32	экзамен

5. Образовательные технологии

ФОО Методы	ц.	Лек	Лаб. раб.	PC C
<i>IT</i> -методы		*	*	*
Работа в команде			*	*
Методы проблемного обучения.		*	*	*
Опережающая самостоятельная работа			*	*
Проектный метод			*	*
Поисковый метод			*	*
Исследовательский метод		*	*	*

ІТ-методы: ЭУК «Математическое моделирование 2» в системе Moodle ТГУ http://moodle.tsu.ru/course/view.php?id=1148

- 6. Учебно-методическое обеспечение самостоятельной работы студентов. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.
- **6.1.** Самостоятельную работу студентов (СРС) можно разделить на текущую и творческую.

Текущая СРС – Проработка лекций, изучение рекомендованной литературы.

Творческая проблемно-ориентированная самостоятельная работа

(TCP) — Анализ источников по темам индивидуальных заданий, поиск существующих аналогов. Создание программ средств, реализующих разрабатываемые алгоритмы, проведение численного эксперимента и анализ его результатов.

6.2. Содержание самостоятельной работы студентов по дисциплине

Самостоятельная работа организуется в двух формах:

- аудиторной (на лабораторных работах при решении поставленных и индивидуальных задач);
- внеаудиторной (проработка лекций, изучение рекомендованной литературы –20 часов; подготовка к выполнению лабораторных занятий 20 часов) оформление отчетов по индивидуальным лабораторным работам (4 часа).

6.3. Контроль самостоятельной работы

Контроль результатов самостоятельной работы осуществляется при проведении 1 письменной контрольной работы и 1 устный коллоквиум по проверке уровня усвоения студентом лекционного материала и проверкой уровня теоретических знаний и практических навыков студента при выполнении им лабораторных работ, защита индивидуальных работ, демонстрация навыков.

6.4. Учебно-методическое обеспечение самостоятельной работы студентов

Студентам для самостоятельной работы предлагается учебно-методическое обеспечение дисциплины в электронном виде.

6.5. Текущий и итоговый контроль оценки качества

Текущий контроль оценки качества усвоения дисциплины заключается в проведении 1 контрольных работ и 1 коллоквиумов. Контрольная работа включает 50 вопросов, при этом каждый студент получает 6 вопросов из этого списка. Для коллоквиума подготовлен список из 30 вопросов. Студент должен устно в режиме реального времени ответить на 5 вопросов из указанного списка.

Вопросы для контрольной работы и коллоквиума

- 1. Каким образом задается монохромное цифровое изображение.
- 2. Когда и кем получена первая фотография обратной стороны Луны.
- 3. Какой диапазон длин волн охватывает видимый свет.
- 4. Какой диапазон длин волн охватывает гамма-излучение.
- 5. Какой диапазон длин волн охватывает рентгеновское излучение.
- 6. Основные стадии цифровой обработки изображений.
- 7. Регистрация изображений.
- 8. Модель формирования цифрового изображения.
- 9. Дискретизация и квантование цифрового изображения.
- 10. Четверка и восьмерка соседей пикселя цифрового изображения.
- 11. Дискретный путь.
- 12. Меры расстояния между пикселями.
- 13. Линейные и нелинейные преобразования цифрового изображения.
- 14. Пространственные методы улучшения изображения.
- 15. Что такое негативное преобразования. Для заданного изображения получите негативное изображение.
- 16. Основные функции градационного преобразования.
- 17. Для заданного изображения получите логарифмически преобразованное изображение.
- 18. Для заданного изображения получите степенное преобразование изображения.
- 19. Кусочно-линейное преобразование изображения.
- 20. Вырезание диапазона яркостей.
- 21. Что такое битовые плоскости и в чем заключается процедура вырезания битовых плоскостей.
- 22. Процедура эквализации гистограммы цифрового изображения.

- 23. Метод приведения гистограмм.
- 24. Локальные методы улучшения изображений.
- 25. Использование гистограммных статистик для улучшения изображения.
- 26. Основы пространственной фильтрации. Свертка.
- 27. Линейные сглаживающие фильтры.
- 28. Общая формула взвешенного среднего и пример маски взвешенного среднего для окрестности k=1.
- 29. Медианный фильтр.
- 30. Фильтры, основанные на порядковых статистиках.
- 31. Применить для заданного изображения фильтр максимум.
- 32. Применить для заданного изображения фильтр минимум.
- 33. Производные функции яркости цифрового изображения.
- 34. Применить для заданного изображения градиентную обработку изображения.
- 35. Применить к заданному изображению оператор Собела.
- 36. Частотные методы обработки изображения. Общие вопросы и основные определения.
- 37. Прямое и обратное преобразование Фурье Функции одного аргумента из L₁.
- 38. Преобразование Фурье дискретного сигнала.
- 39. Теорема Котельникова-Шеннона и разложение Котельникова-Шеннона
- 40. Низкочастотный идеальный фильтр.
- 41. Низкочастотный гауссов фильтр.
- 42. Низкочастотный фильтр Баттерворта.
- 43. Высокочастотный идеальный фильтр.
- 44. Высокочастотный гауссов фильтр.
- 45. Высокочастотный фильтр Баттерворта.
- 46. Модель процесса искажения/восстановления изображения.
- 47. Плотность распределения гауссова шума.
- 48. Плотность распределения экспоненциального шума.
- 49. Плотность распределения импульсного шума.
- 50. Построение оценок параметров распределения шума.
- 51. Адаптивные фильтры.
- 52. Модель цвета **RGB**.
- 53. Модель цвета НSV.
- 54. Модель цвета СМУК.
- 55. Цветное изображение в модели RGB.

Во время выполнения лабораторных работ преподаватель на основе серии контрольных вопросов проверяет теоретические знания студента по теме лабораторной работы.

Пример задания.

TEMA

«РАБОТА С ИЗОБРАЖЕНИЕМ В СРЕДЕ МАТЛАБ» МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЗАДАНИЮ

1) УМЕНЬШИТЬ ИЗОБРАЖЕНИЕ В НЕСКОЛЬКО РАЗ

РИС. 1. ИСХОДНОЕ ИЗОБРАЖЕНИЕ И УМЕНЬШЕННОЕ В 3 РАЗА.

2) РАЗВЕРУТЬ ИЗОБРАЖЕНИЕ:

РИС. 2. РАЗВЕРНУТЫЕ ИЗОБРАЖЕНИЯ

3) ИСПОЛЬЗОВАТЬ РАЗВЕРНУТЫЕ ИЗОБРАЖЕНИЯ КАК ЭЛЕМЕНТЫ РАМКИ

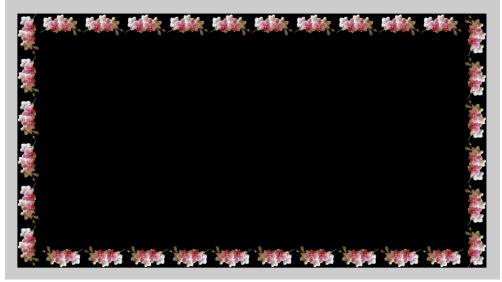


РИС. 3. РАМКА

4) ВСТАВИТЬ КАРТИНКУ

РИС. 4. ВСТАВЛЕННАЯ КАРТИНКА

5) На оценку «отлично» вставить картинку в виде круга или в форме другой фигуры

Для экзамена подготовлены 25 билетов. В каждом билете содержится 2 вопроса и задача. **Примеры экзаменационных билетов**

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Национальный исследовательский

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Механико-математический факультет

Математическое моделирование 2015 г Билет № 15

- 1. Основные стадии цифровой обработки изображений.
- 2. Использование гистограммных статистик для улучшения изображения. Пример. Задача.

Зав. Кафедрой вычислительной математики и компьютерного моделирования ММФ	Старченко А.В.
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКО! Национальный исследовательский	й ФЕДЕРАЦИИ
ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕ Механико-математический факультет	Γ
Математическое моделирование 2015 г Билет № 16	
 Процедура эквализации гистограммы цифрового изображения. Вырезание диапазона яркостей. Пример. 	
Зав. Кафедрой вычислительной математики и компьютерного моделирования ММФ	Старченко А.В.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Национальный исследовательский

следовательский

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Механико-математический факультет

Математическое моделирование 2015 г Билет № 17

- 1. Регистрация изображений.
- 2. Для заданного изображения проведите степенное преобразование изображения и проанализируйте результат. Пример.

Задача.

Зав. Кафедрой вычислительной математики и компьютерного моделирования ММФ

Старченко А.В

Примеры задач для экзаменационных билетов

7. Учебно-методическое и информационное обеспечение дисциплины (модуля)

а) основная литература:

- 1) Гонсалес Р., Вудс Р., Цифровая обработка изображений. Москва: Техносфера, 2006. 1072 стр.
- 2) Гонсалес Р., Вудс Р., Эддинс С. Цифровая обработка изображений в среде МАТLAB. Москва: Техносфера, 2006. 616 стр.
- 3) Алексеев Е.Р., Чеснокова О.В. МАТLAВ 7. Самоучитель. Издательство "НТ Пресс" 2006г. 464 стр.

б) дополнительная литература:

- 1. Nilsback M.-E. An Automatic Visual Flora -- Segmentation and Classification of Flowers Images// PhD thesis from University of Oxford, 2009 169 p.
- 2. Методы компьютерной обработки изображений/ Под ред. В.А. Сойфера. 2-е изд., испр. М.: ФИЗМАТЛИТ, 2003. 784 с.
 - 3. Szeliski R. Computer Vision: Algorithms and Applications. Springer, 2010 957 p.

в) программное обеспечение и Интернет-ресурсы

- 1) http://digest.ws/matlab.html
- 2) http://www.cs.cmu.edu/afs/cs/project/cil/www/v-images.html
- 3) http://www.imageprocessingplace.com/
- 4) http://matlab.exponenta.ru/imageprocess/liter/liter.php

8. Материально-техническое обеспечение дисциплины (модуля)

Для проведения лабораторных и самостоятельной работы используются аудитории 314, 316, 319 оснащенные (каждая) Компьютерами (13 шт.). LCD мониторами BENO 21.5"

Компьютерами (13 шт.), LCD мониторами BENQ 21.5", имеющими процессоры Intel core i5-2400, с тактовой частотой 3.40 ГГц, оперативной памятью: 4 Гб, жестким диском (винчестер) 500 Гб, видеокартой Nvidia GTS 450.

Свободным и лицензионным программным обеспечением, которое включает в себя

- операционные системы:
- Microsoft Windows XP, Microsoft Windows 7, GNU/Linux SLES 10, GNU/Linux CentOS 6;
- офисные и издательские пакеты Microsoft Office 2003, Microsoft Office 2010, MikTeX 2.9;
- средства разработки приложений и СУБД Microsoft Visual Studio 2010, Delphi 2006 (для работы с базами данных Borland Database Engine, Database Desktop), Lazarus, Borland Pascal, PascalABC.NET, Intel Fortran Compiler 12, CUDA Toolkit 4;
- математические пакеты РТС Mathcad 15, Mathematica 8, Maple 15, Matlab R2011b; Statistica
- В образовательном процессе также используются пакеты математической

и графической обработки данных Golden Software Grapher, Golden Software Surfer; пакеты для решения задач вычислительной гидродинамики Ansys CFD 14, Fluent Flowlab; софт для удаленного доступа Winscp, Putty, FreeNX

Программа составлена в соответствии с требованиями ФГОС ВПО с учетом рекомендаций и ПрООП ВПО по направлению и профилю подготовки Направление подготовки: 010200.62 «Математика и компьютерные науки»

Профиль подготовки: 010200.62.04 Математическое и компьютерное моделирование

Авторы	
Доцент Федорова О.П.	
Доцент Богословский Н.Н.	
Рецензент	
-	
Программа одобрена на засед	цании Ученого совет М МФ
от 9 января 2014 года, протог	юл № 50.